Overview of the KIAPS's next generation global model

KIM (Korean Integrated Model)

Young C. Kwon Korea Institute of Atmospheric Prediction Systems (KIAPS)

Hong and Coauthors, 2018: The Korean Integrated Model(KIM) system global weather forecasting. *Asia-Pac, J. Atmos. Sci.*, **54**, 267-292

Contents

- overview of KIAPS
- dynamic core
- physics
- data assimilation
- model framework and verification results
- summary

Overview of KIAPS

Significance of KIM:

- ▶ Removal of scientific and technological dependency on foreign countries
- Scientific basis for improving weather phenomena unique to Korean Peninsula
- ▶ facilitating feedback between forecasters and model developers

Dynamic Core

Representing vertical/horizontal circulations of atmosphere e.g. advections, pressure gradient force, horizontal diffusion (adiabatic processes)

→ no net energy source or sink, so conservation is important spatial/temporal discretization method with grid projection

Overview of KIM dynamic core

"The first fully functional non-hydrostatic spectral element global dynamic core over cubed sphere grid" Joseph Klemp (NCAR)

horizontal discretization: spectral element on cubed sphere vertical discretization: finite difference on hybrid sigma-P temporal discretization: split-explicit RK3 governing equations: WRF-type non-hydrostatic horizontal diffusion: 6th order time-split explicit diffusion NE240 L91 (dx~12km) model top 1Pa (~80km)

Advantages of the cubed sphere: avoid polar singularity, scalability Disadvantages: numerical noise along the edges, computational expensive

The results of KIM scalability test

Development of Non-hydrostatic Dyn. (DCMIP)

Schär mountain gravity wave in reduced Earth (X=500)

https://www.earthsystemcog.org/projects/dcmip-2012/Test_Cases/results_by_mo

- Idealized tropical cyclone with simplified physical forcings

Algorithmic Change EP-based \rightarrow UP_based

The shared points between different elements ('Yellow Area') consider as one point

- Maximum rate of Calculation reduction is #UP/#EP=9/16= 0.5625
- Derivative operator is changed to matrix-vector multiplication
 - Multi-loop for elements is vanished.
- Direct Stiffness summation is included in the matrix
 - Further enhance the efficiency

Physics

Representing change of atmospheric thermodynamic status e.g. air temperature, humidity, precipitation (diabatic processes)

 \rightarrow net energy source or sink to air: causes of weather

KIM3.0 Physics

	Scheme	Updated	Reference	
Radiation (복사)	Revised RAD (RRTMK)	 unified RRTMG reduced MCICA updated ancillaries (aerosol, GMAO ozone, reflectivity, emissivity, snow albedo) Improved two-stream approximation for shortwave radiation Scale-awareness for sub-grid hydrometeors 	lacono et al. 2008 Beak 2017	
Land surface (지면)	Revised LSM	 3-layer sea-ice model frozen processes (z0, conductivity over snow cover, flux over sea-ice) USGS to IGBP for land data soil moisture initialization consistent diffusivity in LSM and RAD Heterogeneous land-surface parametrization Roughness length considering snow 	Ek et al. 2003 Koo et al. 2016	
Ocean surface layer (해수면)	Diurnal SST OSH	SST warming effectConsidering salinity effect	Kim and Hong 2010 Lee and Hong 2017	
Boundary layer (경계층)	Scale-aware non-local PBL	 top-down mixing updated background diffusion & heating rate minimum Richardson number changed scale-aware (ShingHong PBL) Considering dissipative heating 	Hong et al. 2006 Shin and Hong 2015 Lee et al. 2016	
Gravity wave drag	Sub-grid orographic GWD	flow blocking dragorographic anisotropyupdated efficiency/intermittency factor	Hong et al., 2008 Choi and Hong 2015	
(중국파)	Non-orographic GWD	Source-based spectral nonorographic GWD	Choi et al. 2017	
Deep convection (깊은대류)	Scale-aware mass-flux CPS	 revised autoconversion & entrainment rate moisture-based trigger threshold scale-aware / aerosol-aware 	Han and Pan 2011 Lim et al. 2014 Han et al. 2016 Kwon and Hong 2016	
Shallow convection (얕은대류)	Adjustment SCV	improved eddy diffusivity profile (2.5)Considering diffusion of cloud water contents	Hong et al. 2013	
Microphysics (미세물리)	WSM5 MPS	effective radius	Hong et al. 2004 Bae et al. 2016	
Cloudiness (운량)	 revised CPS condensate consistency (cloud-MPS-CPS-RAD) reduced high cloud fraction at high latitude 		Park et al. 2016	

The grid-size dependency is considered (scale-aware scheme)

$= 1 1 \int_{\text{tor}^{-1}} \left[- \left(A_{11} A_{12} \right) \right] + \pi \right]$		
$o = 1 - \frac{1}{\pi} \left\{ \tan \left[O_{\text{con}} \left(\Delta x - \Delta x_{5\text{km}} \right) \right] + \frac{1}{2} \right\}$	Δx	σ
where $\sigma = \frac{\tan(0.4\pi)}{\tan(0.4\pi)}$	9 km	0.1
$\Delta x_{5\rm km} - \Delta x_{1\rm km}$		0.5
Adapted from Hong and Pan (1998, MWR)	1 km	0.9

- Cloud-base mass flux $[\propto (1 \sigma)^2]$
- Convective Inhibition (\propto (1- σ))
- Moisture detrained to grid scale ($\propto \sigma)$

24-h accumulated precipitation

TMPA

max. precip: 299.412 mm No CPS in the domain with $\Delta x = 3$ km

Original SAS in the domain with $\Delta x = 3$ km

Modified SAS in the domain

1

Evaporation over Ocean

To apply the saturated vapor pressure for seawater over ocean
 Global sea surface salinity ~ 32-38 ‰

Improvement of light rain forecasting

Lee and Hong (under review)

Data Assimilation

Accurately representing the current status (or initial condition) of the atmosphere

 \rightarrow Time tendency calculated by dynamics and physics will be added to predict future weather

Observation data used in KMA and KIAPS assimilation system

Ob	servation type	КМА	KIAPS	Ob	servation type	КМА	KIAPS
1	SONDE	0	0	9	IASI	0	0
2	SURFACE	0	0	10	CrIS	0	0
3	AIRCRAFT	0	0	11	ATMS	0	0
4	SCATWIND	0	0	12	AMV	0	0
5	HIRS	0	×	13	GPS-RO	0	0
6	AMSU-A	0	0	14	CSR	0	0
7	мнѕ	0	0	15	SSMIS	×	0
8	AIRS	0	×	16	TC bogus	0	0

SCATWIND: Scatterometer wind HIRS: High-resolution Infrared Radiation Sounder AMSU-A: Advanced Microwave Sounding Unit-A MHS: Microwave Humidity Sounder AIRS: Atmospheric Infrared Sounder IASI: Infrared Atmospheric Sounding Interferometer

- CrIS: Cross-track Infared Sounder
- ATMS: Advanced Technology Microwave Sounder
- AMV: Atmospheric Motion Vector
- GPS-RO: GPS Radio occultation
- CSR: Clear Sky Radiance
- SSMIS: Special Sensor Microwave Imager Sounder

<u>3DVAR</u>

Song and Kwon 2015 (MWR)

- 3DVAR system built on KIM (cubed sphere grid using Real-observations)
- Spectral transform as the horizontal Filter
 Direct transform from cubed sphere grid to wave space
- The observation data assimilated so far

Sonde, Surface, Aircraft, AMSU-A, IASI, GPO-RO, AMV, ATMS, CrIS, MHS, CSR, ScatWind (12 types)

Results of 3DVAR system

Hybrid-4DEnVar (2017 Mar)

4DEnVar Forecast System with KIM, KPOP, and 4DLETKF

KPOP: KIAPS Package for Observation Processing
KIM resolution (NE240 ~ 12 km)
Ensemble resolution (NE060 ~ 50 km), 50 members
Analysis resolution (NE060 ~ 50 km)

Model Framework and verification results

Multi-platform KIM

General Bilinear Interpolation between Spherical Grids

Remapping between arbitrary spherical grids

Improvement of I/O performance using I/O decomposition method

	w/o I/O decomp.	w/ I/O decompo.	speed-up
ncores	10,	800	
nios	5,004	139	
total (sec)	14,259 (3h 58m)	12,244 (3h 24m)	1.16
write (sec)	1,318 (9.2%)	478 (3.9%)	2.76

When applied to KIM, the performance is improved about 2.76 times in the output and about 1.16 times in the total when compared to the conventional parallel output.

- The # of output processes is set to x1, x1/2, x1/4, x1/12 of the # of total processes.
- With 5,328 processes, it is 3.5 times faster to use 444 processes than to use the entire processes for output.

KIM Real time forecasts skill

500hPa geopotential height anomaly correlation at t=+120h fcst

SUMMARY

Major components of KIM are mostly developed by KIAPS scientists - dynamic core, physics, data assimilation and model framework

▶ Non-hydrostatic dynamic core and data assimilation system over cubed sphere system are implemented at KIAPS, will be adopted to US/NWS and UK Met Office

▶ Physics suite of KIM has many updates with special emphasis on scale-aware and inter-scheme consistency

► Flexible model framework – operable on both CPU & GPU platform, KIM-IO, coupler capability are also developed in KIAPS

► The continuous objective and subjective verifications are conducted in order to ensure the improvement of updated model and identify model deficiencies

Korea Institute of Atmospheric Prediction Systems Beyond the limit of the modern science and technology

Thank you

Parallel design for local implicit diffusion FRAME

Develop a new parallel design because it requires wider and more complex communications than the DSS

A new algorithm to find a neighbor element/point on the cubed-sphere

(1) Define rotation indices of neighbor panels

(2) Convert index coordinates

Rotation	Return	
0	(i, j)	
1	(j,n-i+1)	
2	(n-i+1,n-j+1)	
3	(n-j+1, i)	

(3) Find a neighbor using simple arithmetic

A new general-purpose library for MPI point-to-point communications

 Generate index tables automatically for MPI point-to-point communications from a given Source-Destination mapping table

<u>3DVAR</u>

Song and Kwon 2015 (MWR)

- 3DVAR system built on KIM (cubed sphere grid using Real-observations)
- Spectral transform as the horizontal Filter
 Direct transform from cubed sphere grid to wave space
- The observation data assimilated so far

Sonde, Surface, Aircraft, AMSU-A, IASI, GPO-RO, AMV, ATMS, CrIS, MHS, CSR, ScatWind (12 types)

Results of 3DVAR system

Increase the order of the diffusion operator

- The fourth-order diffusion scheme \rightarrow sixth-order diffusion
- Outer loop time-split horizontal diffusion (5 times per a time-march)
- Increased dt and enhanced energy spectra are achieved.

ne120	KIM2.2(CTL)	KIM2.3
dt	15	60
Diffusion order	2	3
Diffusion Coeff.	1.8E13	3.0D21

The results of KIM scalability test

RAD

- Reducing cold bias at surface from snow albedo correction
- G-Packed McICA : 3 times faster than McICA without losing accuracy
- Tuned two-stream approximation : reduces RMS error to 60 % with no significant computational cost

Improvement of clod bias at lower level by modification of snow albedo

Reducing computation time of McICA

RMS error of each cosine of solar zenith angle μ_0 bin

<u>GWD-PBL</u>

Scale-aware subgrid-scale orographic parameterization

- Scale separation of subgrid orography (meso/turbulent scales)
- Inclusion of turbulent scale orographic drag

Improvement of mesoscale orographic drag

 σ_{f} : standard deviation of turbulent scale orography z_{0} : effective roughness length z_{1} : lowest model-layer height

Original (ORG) Modified (MOD) **Turbulent scale orographic drag** $1 - 4 \, \text{km}$ (SFC/PBL) $z_0 = \min(0.001\sigma_f, z_1)$ when $\sigma_f > 1$ m $4 \text{ km} - \Lambda x$ Mesoscale orographic drag $1 \text{ km} - \Lambda x$ **Modified flow blocking drag** (Orographic GWD) ORG **MOD-ORG** 10-m wind speed WS10M(m/s) region: Global (total) **Furbulent** arims T510 stress Latitude (degrees) arima_1540 (m/s) Improvement in 10-m wind bias ORG -0.06 "Increase over high terrai speed error -0.08 Bias : MOD 0.05 in terms of ³⁶⁰[N m⁻²] 0 [N m⁻²] global Forecast time (day) Orographic average for a grims_T510 -atitude (degrees) 0.04 grims_T510 boreal winter stress (m/s) 0.03 (2016 January) Decrease over high terra -0.02 0.03 RMSE 0.05 Forecast time (day)

Data assimilation monitory system

Number of observation

Evaluation of the analysis

4 4 4 8

1 2 3 4 5

Conventional observation

Aircraft Thinning update

Number of observation

13155 \rightarrow 25365 (~93% inc.) but, not much diff. in statistics

Almost 2 times bigger observations

SONDE drift estimation in KPOP (Prototype for 1 point)

• BAR (Barrow, AK, USA)

– 151 obs. used from Jan. to Aug. 2017 (~20 obs. at each month)

$$\begin{aligned} x_k &= x_{k-1} + \frac{t_k (u_k + u_{k-1})/2}{d_{ref} \times \cos(\emptyset)} & -(\text{Longitude in deg.}) \\ y_k &= y_{k-1} + \frac{t_k (v_k + v_{k-1})/2}{d_{ref}} & -(\text{Latitude in deg.}) \end{aligned}$$

where,

$$t_{k} = \Delta Prs/(\overline{R_{dP}} + \overline{R_{dP}} \times E_{Ws}) \quad \text{-(ascent time in sec.)}$$

$$\overline{R_{dP}} = \left[\left(p_{a} \times Prs_{k}^{2} + p_{b} \times Prs_{k} + p_{c} \right) + \left(p_{a} \times Prs_{k-1}^{2} + p_{b} \times Prs_{k-1} + p_{c} \right) \right]/2$$

$$\Delta Prs = Prs_{k-1} - Prs_{k}$$

$$E_{Ws} = w_{a} \times W_{spd} + w_{b}$$

Location error: 0.008 (lat) & 0.009 (lon) = 0.942 km (vs. 143.9 km) → 99.3% error reduction

Horizontal localization for LETKF

4.00

3.60

3.20

2.80

U Time series of mean RMSD T Time series of mean RMSD Q Time series of mean RMSD

Fig 7. **Time series of global mean RMSD** against IFS analysis data over 10~1000hPa. It shows **Hloc3** is the best performance in this study.

Fig 8. **Time series of difference of global averaged RMSD** between CTRL and Hloc3. All the variables improve over troposphere.

Fig 6. **CTRL** is constant horizontal localization scale, which is used in the original KIAPS-LETKF system (gray line). **Hloc1** is GSI's localization scale (black line), **Hloc2** and **Hloc3** are modified localization scale (blue and red line).

Megha-Tropiques SAPHIR: microwave humidity sounder

CTRL: Conventional, GPS-RO, AMV, ScatWind, AMSUA **EXP** : CTRL + SAPHIR 6 channels

Improvement of I/O performance

	w/o I/O decomp.	w/ I/O decompo.	speed-up
ncores	10,	800	
nios	5,004	139	
total (sec)	14,259 (3h 58m)	12,244 (3h 24m)	1.16
write (sec)	1,318 (9.2%)	478 (3.9%)	2.76

When applied to KIM, the performance is improved about 2.76 times in the output and about 1.16 times in the total when compared to the conventional parallel output.

- The # of output processes is set to x1, x1/2, x1/4, x1/12 of the # of total processes.
- With 5,328 processes, it is 3.5 times faster to use 444 processes than to use the entire processes for output.

Analysis RMSD against IFS analysis

37

Table of KIAPS DA updates

	KIM3.0.01	KIM3.0a
KPOP	 Bug fixed (Surface height correction for 2 m temperature and moisture) Remove Land data from CrIS 4D Thinning except for Surface and ScatWind 	 LEOGEO satellite for AMV For MHS: land usage and obs error reduction Bug fixed (Equidistance thinning box) 4D Thinning except for Surface
	_Hybrid-4DEnVar	<u>Hybrid-4DEnVar</u>
DA Techni que	 Reduce a static background error of q Rescale factor of q: 3 → 1 Ensemble background error works more Inflation of observation error Surface x 2, CrIS x 2, Aircraft x 1.3, AMV x1.3, IASI x1.3 Add observation: COMS-CSR 	 Bug fix on reading ensemble samples Ratio of ensemble background error: 30% Recentering for Q Var 50 % and Ensemble mean 50 % for q Bug fix on q initialization Pseudo-RH Inflation of observation error ScatWind x 1.3
	LETKF	LETKF
	 Add Observation MHS, CrIS, ATMS, and COMS-CSR Modification of additive inflation Inflation factor (0.1 → 0.3) Modification of horizontal localization Varies with level increasing (GSU's localization profile was referred) Modification of vertical localization for : Weighting function from KPOP 	 Add Observation MHS, CrIS, ATMS, and COMS-CSR Modification of additive inflation Inflation factor (0.1 → 0.3) Modification of horizontal localization Varies with level increasing (Min: 700 km, Max: 1800 km) Modification of vertical localization for radiance Weighting function from KPOP

+ KIM3.0a model update

Evaluation of the KIM analysis

H4DEV3.0 H4DEV3.0a

- H4DEV3.0a is better, especially in Q
- H4DEV3.0a: 4DEnVar update KPOP update and LEOGEO KIM model update

KIM Real time forecasts skill

500hPa geopotential height anomaly correlation at t=+120h fcst

KMA UM vs KIM

Lower order basis function (np4 \rightarrow np3)

The reduction in accuracy due to the use of the lower order basis function seems to be small in NWP. But, larger time-step size can be allowed in the model \rightarrow Enhancement of calculation efficiency

